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1. Introduction

Type IIA orientifolds with intersecting D6-branes and their mirror symmetric Type IIB

counterparts have proven to provide a phenomenologically interesting class of string com-

pactifications and have been under intense investigation during the last couple of years [1 –

4].

In order to make contact with experiment one needs not only the means to determine

the gauge group and chiral matter content of such a string model, but also has to develop

tools for the computation of the low energy effective action. It is in this latter low energy

description where important issues like moduli stabilisation and supersymmetry breaking

are discussed.

In this paper we would like to clarify certain important aspects of this effective action,

which to our knowledge have so far not been spelled out in the literature. The first issue

concerns the properties of the gauge couplings in N = 1 supersymmetric D6-brane vacua.

The physical one-loop open string threshold corrections to the gauge couplings have been

computed in [5, 6] for toroidal backgrounds. Here we first state a non-renormalisation

theorem for the holomorphic gauge kinetic function at the one-loop level and then explicitly
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show that it is indeed satisfied for the Wilsonian gauge couplings in toroidal Type IIA

orientifolds.

We revisit perturbative one-loop corrections to the Fayet-Iliopoulos (FI) terms for

intersecting D6-branes. In [7] it was shown that, if the D6-branes are supersymmetric at

tree-level, in a globally consistent model no such corrections are generated at one-loop. We

ask the question whether a small non-vanishing FI-term on a D6b-brane can induce an FI-

term on a D6a-brane which is supersymmetric at tree-level. We find the intriguing result

that the one-loop induced FI-term on brane D6a can be expressed by the gauge threshold

corrections.

Moving back to gauge couplings, the extraction of the Wilsonian part involves an inter-

esting interplay between the non-holomorphic gauge couplings and the Kähler potentials

for all the matter fields involved, providing strong constraints on the complete moduli de-

pendence of the matter field Kähler potentials. As we will see, in order to cancel all σ-model

anomalies in the effective action, a one-loop redefinition of the dilaton S-field as well as of

the complex structure moduli U is needed. The hereby induced corrections to the gauge

coupling constants will be referred to as “universal” threshold corrections (in analogy with

the heterotic string). This is in contrast to perturbative heterotic string compactifications,

where only the dilaton acquires a universal one-loop field redefinition [8 – 13].

Having revisited and discussed the perturbative one-loop corrections, in the second

part of the paper we undertake some first steps towards a better understanding of possible

D-instanton effects. Such effects are very important for an understanding of the vacuum

structure (these days called the landscape) of string compactifications and it has been

pointed out recently that they can also generate phenomenologically appealing terms like

Majorana masses for neutrinos [14 – 20]. Moreover, they are also important for the string

theory description of gauge instanton effects [21 – 25] (see [26] for a recent general review

on instantons).

String instantons are given by wrapped string world-sheets as well as by wrapped

Euclidean D-branes and, like in field theory, their contributions to the space-time super-

potential are quite restricted. These contributions can be computed in a semi-classical

approach, i.e. one involving only the tree-level instanton action and a one-loop determi-

nant for the fluctuations around the instanton [27]. For type IIA orientifold models on

Calabi-Yau spaces with intersecting D6-branes (and their T-dual cousins) the contribution

of wrapped Euclidean D2-branes, hereafter called E2-branes, to the superpotential has been

determined in [14] (see also [15]). Since both the D6-branes and the E2-instantons are de-

scribed by open string theories, it was shown that (in the spirit of the D(−1) instantons

treated e.g. in [28, 29, 21]) the entire instanton computation boils down to the evaluation

of disc and one-loop string diagrams with boundary (changing) operators inserted. Here

both the D6-branes and the E2-instantons wrap compact three-cycles of the Calabi-Yau

manifold.

Intriguingly, the one-loop contributions in the instanton amplitude [14] have been

shown to be identical to string threshold corrections for the gauge couplings of the corre-

sponding D6-branes [17, 23]. This relates the computation of such instanton amplitudes to

the discussion in the first half of this paper. So far it has not been explained explicitly in
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which sense the computed instantonic correlation functions are meant to be holomorphic.

With the results from the first part of this paper, we clarify this point.

Finally, we show that E2-instantons not only contribute to the superpotential but, from

the zero mode counting, can also contribute to the holomorphic gauge kinetic functions for

the SU(N) gauge groups localised on the D6-branes. In order for such corrections to arise,

the E2-instanton must not be rigid but must admit one extra pair of fermionic zero modes

arising from a deformation of the instanton. This is the space-time instanton generalisation

of a fact known from topological string theory, namely that world-sheet instantons induce

tr(W 2)h−1 couplings if they have h boundaries. We will see that such couplings can also

arise from space-time E2-instantons. Finally, we find that the zero mode counting also

allows E2-instanton corrections to the FI-terms on the D6-branes. Similar to the one-loop

corrections, these can arise once the supersymmetry on the E2-brane is softly broken by

for instance turning on the C3-form modulus through the world-volume of E2.

2. A non-renormalisation theorem

Let us investigate the structure of perturbative and non-perturbative corrections to the

holomorphic gauge kinetic functions for Type II orientifolds. We discuss this for Type IIA

orientifolds, but this is of course related via mirror symmetry to the corresponding Type

IIB orientifolds.

Consider a Type IIA orientifold with O6-planes and intersecting D6-branes preserving

N = 1 supersymmetry in four dimensions, i.e. the D6-branes wrap special Lagrangian

(sLag) three-cycles Πa of the underlying Calabi-Yau manifold X , all preserving the same

supersymmetry. On the threefold we introduce in the usual way a symplectic basis (AI , B
I),

I = 0, 1, . . . , h2,1 of homological three-cycles with the topological intersection numbers

AI ◦ BJ = δJ
I . (2.1)

Moreover, we assume that the AI cycles are invariant under the orientifold projection and

that the BJ cycles are projected out. The complexified complex structure moduli on such

an orientifold are defined as

U c
I =

1

(2π) ℓ3
s

[
e−φ4

∫

AI

ℜ(Ω̂3) − i

∫

AI

C3

]
, (2.2)

where Ω̂3 denotes the normalised holomorphic three-form on X and the four-dimensional

dilaton is defined by φ4 = φ10− 1
2 ln(VX /ℓ6

s). Expanding a three cycle Πa into the symplectic

basis,

Πa = M I
a AI + Na,I BI , (2.3)

with M I , NI ∈ Z, from dimensional reduction of the Dirac-Born-Infeld (DBI) action one

can deduce the SU(Na) gauge kinetic functions at string tree-level

fa =

h2,1∑

I=0

M I
a U c

I . (2.4)
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Since the imaginary parts of the U c
I are axionic fields, they enjoy a Peccei-Quinn shift

symmetry U c
I → U c

I + cI which is preserved perturbatively and only broken by E2-brane

instantons.

Let Ci denote a basis of anti-invariant 2-cycles, i.e. Ci ∈ H1,1
− . The complexified Kähler

moduli are then defined as

T c
i =

1

ℓ2
s

(∫

Ci

J2 − i

∫

Ci

B2

)
, (2.5)

where B2 denotes the NS-NS two-form of the Type IIA superstring. Therefore, also the

complexified Kähler moduli enjoy a Peccei-Quinn shift symmetry, broken by world-sheet

instantons. Note, that the chiral fields T c
i organise the σ-model perturbation theory and do

not contain the dilaton, so that the string perturbative theory is entirely defined by powers

of the U c
I . Moreover, to shorten the notation we denote by U c

I and T c
i the complexified

moduli and by UI and Ti only the real parts.

The superpotential W and the gauge kinetic function f in the four-dimensional ef-

fective supergravity action are holomorphic quantities. In the usual way, employing holo-

morphy and the Peccei-Quinn symmetries above, one arrives at the following two non-

renormalisation theorems.

The superpotential can only have the following dependence on U c
I and T c

i

W = Wtree + W np
(
e−Uc

I , e−T c
i

)
, (2.6)

i.e. beyond tree-level there can only be non-perturbative contributions from world-sheet

and E2-brane instantons. Similarly, the holomorphic gauge kinetic function must look like

fa =
∑

I

M I
aU c

I + f1-loop
a

(
e−T c

i
)

+ fnp
a

(
e−Uc

I , e−T c
i
)
, (2.7)

i.e. in particular its one-loop correction must not depend on the complex structure moduli.

Finally, we consider the Fayet-Iliopoulos terms for the U(1)a gauge fields on the D6-branes.

At string tree-level and for small deviations from the supersymmetry locus, these are given

by

ξa = e−φ4

∫

Πa

ℑ(Ω̂3) = e−φ4 N I
a

∫

BI

ℑ(Ω̂3) (2.8)

and therefore only depend on the complex structure moduli. At this classical level there are

no α′ corrections. It is an important question about brane stability whether these FI-terms

receive perturbative or non-perturbative corrections in gs. Again, non-renormalisation

theorems say that in the Wilsonian sense one expects perturbative corrections at most at

one-loop.

In the following, we will be concerned with the terms beyond tree-level appearing

in (2.6), (2.7) and for the FI-terms. First, we discuss the one-loop threshold corrections

f1−loop
(
e−T c

i

)
, which also make their appearance in the space-time instanton generated su-

perpotential W np
(
e−Uc

I , e−T c
i

)
. Second, we will revisit the computation of stringy one-loop

corrections to the FI-terms. Finally, we will discuss fnp
(
e−Uc

I , e−T c
i

)
as well as instanton

corrections to the FI-terms.
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3. One-loop thresholds for intersecting D6-branes on T
6

The purpose of this section is to recall the one-loop results for the gauge threshold cor-

rections in intersecting D6-brane models [5, 30, 6]. The gauge coupling constants of the

various gauge group factors Ga in such a model, up to one loop, have the form

8π2

g2
a(µ)

=
8π2

g2
a,string

+
ba

2
ln

(
M2

s

µ2

)
+

∆a

2
, (3.1)

where ba is the beta function coefficient. The first term corresponds to the gauge coupling

constant at the string scale, which contains the tree-level gauge coupling as well as the

“universal” contributions at one-loop (see section 5.2). These contributions are universal

in the sense that they originate from a redefinition of the dilaton and complex structure

moduli at one-loop. The redefinition is brane stack and therefore gauge group independent .

However, as the gauge couplings differ for the various gauge groups already at tree level, this

correction effectively is gauge group dependent. The second term gives the usual one-loop

running of the coupling constants, and the third term denotes the one-loop string threshold

corrections originating from integrating out massive string excitations. The last two terms

can be computed as a sum of all annulus and Möbius diagrams with one boundary on brane

a in the presence of a background magnetic field in the four-dimensional space-time:

ba ln

(
M2

s

µ2

)
+ ∆a =

∑

b

TA(D6a,D6b) +
∑

b′

TA(D6a,D6b′) (3.2)

+ TA(D6a,D6a′) + TM (D6a,O6).

Here, D6c′ denotes the orientifold image of brane c. In an orbifold one also has to take into

account the orbifold images of the branes and orientifold planes.

The relevant amplitudes for the Z2×Z2 orbifold have been computed [5, 6]. In a sector

preserving N = 1 supersymmetry (this means in particular
∑

I θI
ab = 0) the annulus and

Möbius amplitudes are (after subtracting terms which upon summing over all diagrams

vanish due to the tadpole cancellation condition) [6]

TA(D6a,D6b) =
IabNb

2

[
ln

(
M2

s

µ2

) 3∑

I=1

sign(θI
ab)−ln

3∏

I=1

(
Γ(|θI

ab|)
Γ(1 − |θI

ab|)

)sign(θI
ab

)

−
3∑

I=1

sign(θI
ab) (ln 2 − γ)

]
, (3.3)

TM (D6a,O6k) = ±Ia;O6k

[

ln

(
M2

s

µ2

) 3∑

I=1

sign(θI
a;O6k

)−ln

3∏

I=1

(
Γ(2|θI

a;O6k
|)

Γ(1 − 2|θI
a;O6k

|)

)sign(θI
a;O6k

)

+

3∑

I=1

sign(θI
a;O6k

)(γ − 3 ln 2)

]
, (3.4)

where Iab is the intersection number of branes a and b, Nb is the number of branes on

stack b and πθI
ab is the intersection angle of branes a and b on the I’th torus. Similarly,
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Ia;O6k
denotes the intersection number of brane a and orientifold plane k and πθI

a;O6k
their

intersection angle. The formula for TM is only valid for |θI
a;O6k

| < 1/2, the formulas for

other cases look similar [6].

In a sector preserving N = 2 supersymmetry one finds [5]

TA(D6a,D6b) = Nb|IJ
ab IK

ab |
[
ln

(
M2

s

µ2

)
− ln |η(i T c

I )|4 − ln(TI V a
I ) + γE − ln(4π)

]
, (3.5)

where I denotes the torus on which the branes lie on top of each other, TI its Kähler mod-

ulus and T c
I its complexification with TI = ℜ(T c

I ). Furthermore, V a
I = |nI

a + iuIm
I
a|2/uI ,

with uI the complex structure modulus of the torus and nI
a, mI

a the wrapping numbers on

the I’th torus. Note that the moduli dependence of the one-loop threshold function in the

N = 2 sectors is in complete agreement with the non-renormalisation theorems of section

two (see eq. (2.7)), since the holomorphic part of ∆N=2
a is proportional only to ln η(i T c

I ).

For the N = 1 sectors, the one-loop thresholds in a given open string D6-brane sector

have the following form (specialising to the case θ1,2
ab > 0, θ3

ab < 0):

∆a = − ba

16π2
ln

[
Γ(θ1

ab)Γ(θ2
ab)Γ(1 + θ3

ab)

Γ(1 − θ1
ab)Γ(1 − θ2

ab)Γ(−θ3
ab)

]
. (3.6)

This expression is a non-holomorphic function of the complex structure moduli U c
I . Hence,

for the N = 1 sectors, the holomorphic one-loop gauge kinetic function f1−loop
a

(
e−T c

i

)
van-

ishes. The emergence of the non-holomorphic terms in the one-loop threshold corrections

will be further discussed in section 5.

4. Fayet-Iliopoulos terms

In this section we investigate one-loop corrections to the FI-terms for a U(1)a gauge field

on the D6a-brane induced by the presence of other branes D6b. Such corrections for Type

I string vacua have already been studied in [31, 32] and the case of intersecting D6-branes

has been discussed in [7]. Here we are following essentially the computational technique

of [7]. The crucial observation is that the vertex operator for the auxiliary D-field in the

(0)-ghost picture is simply given by the internal world-sheet U(1) current, i.e. V
(0)
Da

= JU(1).

Therefore, the one-point function of V
(0)
Da

on the annulus with boundaries a and b can be

written as

〈VDa〉 = − i

2π
∂ν

∫ ∞

0
dt Zab(ν, it)|ν=0, (4.1)

where Zab(ν, it) denotes the annulus partition function, with insertion of exp(2πiJ0), in

the open string sector (ab), where J0 is the zero mode of the U(1) current. In the case of

intersecting D6-branes on a torus preserving N = 1 supersymmetry and after application

of the Riemann theta-identities, this partition function is given by

Zab(ν, it) = Iab Nb
(−i)3

π4t2
ϑ1(

3ν
2 , it)

∏
I ϑ1(−ν

2 + iθI

2 t, it)

η3(it)
∏

I ϑ1(i
θI

2 t, it)
. (4.2)
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Using that ϑ1(0, it) = 0 and ϑ′
1(ν, it)|ν=0 = −2πη3, one obtains the divergence

〈VDa〉 ≃ Iab Nb

∫ ∞

0

dt

t2
, (4.3)

which is cancelled by tadpole cancellation in a global model. Therefore, once the D6-branes

are supersymmetric at tree-level, no FI-term is generated at one-loop level and the system

is not destabilised. This result is consistent with the computations in [31, 32].

However, this is not the end of the story of the one-loop corrections to FI-terms in

intersecting D6-brane models. One can also envision that a tree-level FI-term on a brane

D6b induces via a one-loop diagram an FI-term on a brane D6a. To proceed we assume

that θI
b → θI

b + 2ǫI with
∑

ǫI = ǫ and compute

〈VDa〉ǫI = − i

2π
∂ν∂ǫI

∫ ∞

0
dt Zab(ǫ

I , ν, it)|ν=0,ǫI=0 (4.4)

with

Zab(ǫ
I , ν, it) = Iab Nb

(−i)3

π4t2
ϑ1(

3ν
2 + i ǫ

2t, it)
∏

I ϑ1

(
−ν

2 + i (ǫI−ǫJ−ǫK)
2 t + iθI

2 t, it
)

η3(it)
∏

I ϑ1(iǫI t + iθI

2 t, it)
.

The derivative with respect to the supersymmetry breaking parameters ǫI brings down one

factor of t and it turns out that the result is the same for all ∂ǫI :

〈VDa〉ǫ ≃ i Iab Nb

∫ ∞

0

dt

t

3∑

I=1

ϑ′
1

ϑ1

(
iθI

ab
t

2 , it
2

)
. (4.5)

This is the same expression as the one-loop threshold corrections TA(D6a,D6b), so that at

linear order in ǫ we obtain for the FI-terms

(ξa)ǫ = (ǫb − ǫa)TA(D6a,D6b). (4.6)

Completely analogously, one can show that this formula remains true also for N = 2 open

string sectors. Therefore, we would like to propose that such a relation between gauge

threshold and one-loop corrections to FI-terms is valid for general intersecting D6-brane

models. Moreover, the Wilsonian part of the thresholds TA(D6a,D6b), which we compute

in the next section, should also be the Wilsonian part of the correction to the FI-terms.

5. Wilsonian gauge kinetic function and σ-model anomalies

In a supersymmetric gauge theory one can compute the running gauge couplings ga(µ
2) in

terms of the gauge kinetic functions fa, the Kähler potential K and the Kähler metrics of

the charged matter fields Kab(µ2) [33, 8 – 13]:

8π2

g2
a(µ

2)
= 8π2 ℜ(fa)+

ba

2
ln

(
Λ2

µ2

)
+

ca

2
K+T (Ga) ln g−2

a (µ2)−
∑

r

Ta(r) ln detKr(µ
2), (5.1)

– 7 –



J
H
E
P
0
8
(
2
0
0
7
)
0
4
4

with

ba =
∑

r

nrTa(r) − 3T (Ga), ca =
∑

r

nrTa(r) − T (Ga) (5.2)

and Ta(r) = Tr(T 2
(a)) (T(a) being the generators of the gauge group Ga). In addition,

T (Ga) = Ta(adj Ga) and nr is the number of multiplets in the representation r of the

gauge group and the sums run over these representations. In this context, the natural

cutoff scale for a field theory is the Planck scale, i.e. Λ2 = M2
Pl.

The left hand side of eq. (5.1) is given by eq. (3.1), which contains the gauge coupling

at the string scale, 1/g2
a,string, as well as the one-loop string threshold corrections ∆a. In

general, ∆a is the sum of a non-holomorphic term plus the real-part of a holomorphic

threshold correction:

∆a = ∆n.h.
a + ℜ(∆hol.

a ) . (5.3)

On the right hand side of eq. (5.1), fa denotes the Wilsonian, i.e. holomorphic, gauge

kinetic function, which is given in terms of a holomorphic tree-level function plus the

holomorphic part of the one-loop threshold corrections (cf. eq. (2.7)):

fa = f tree
a + f1−loop

a

(
e−T c

i
)

=
∑

I

M I
aU c

I + ∆hol.
a . (5.4)

In addition, on the right hand side of eq. (5.1) the non-holomorphic terms proportional

to the Kähler metric of the moduli K and the matter field Kähler metrics Kr are due

to the one-loop contributions of massless fields. These fields generate non-local terms

in the one-loop effective action, which correspond to one-loop non-invariances under σ-

model transformations, the so-called σ-model anomalies (Kähler and reparametrisation

anomalies).

Matching up all terms in eq. (5.1) essentially means that the σ-model anomalies can

be cancelled in a two-fold way. First, by local contributions to the gauge coupling constant

via the one-loop threshold contributions ∆a. These terms originate from massive string

states. The second way to cancel the σ-model anomalies is due to a field dependent

(however gauge group independent) one-loop contribution to the Kähler potential of the

chiral moduli fields. It implies that some of the moduli fields transform non-trivially

under the Kähler transformations and also under reparametrisations in moduli space. The

universal one-loop modification of the Kähler potential is nothing else than a generalised

Green-Schwarz mechanism cancelling the σ-model anomalies. This is analogous to the

Green-Schwarz mechanism which cancels anomalies of physical U(1) gauge fields, whereas

the σ-model anomalies correspond to unphysical, composite gauge connections. Effectively

it means that the Green-Schwarz mechanism with respect to the σ-model anomalies can

be described by a non-holomorphic, one-loop field redefinition of the associated tree-level

moduli fields.

As we will see, in type IIA orientifold models these field redefinitions act on the real

parts of the dilaton field S as well as the complex structure moduli UJ :

S → S + δGS(U, T )

UJ → UJ + δGS
J (U, T ). (5.5)

– 8 –
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These redefined fields are those that determine the gauge coupling constants 1/g2
a,string

at the string scale. Recall that, as the tree-level gauge couplings (2.4) are already gauge

group dependent, so are these one-loop corrections, but the only dependence arises due

to the universal one-loop redefinition of the moduli fields. It is in this sense that we still

call these one-loop corrections to the gauge couplings universal. Note that in heterotic

string compactifications, the σ-model Green-Schwarz mechanism only acts on the heterotic

dilaton field.

5.1 Holomorphic gauge couplings for toroidal models

In summary, equation (5.1) is to be understood recursively, which means that one can

insert the tree-level results into the last three terms of eq. (5.1). In addition, one also has to

include the universal field redefinition eq. (5.5) in 1/g2
a,string in the left hand side of eq. (5.1),

in order to get a complete matching of all terms in eq. (5.1), as we will demonstrate for the

aforementioned toroidal orbifold in the following. For N = 2 sectors the one-loop threshold

corrections to the gauge coupling constant indeed contain a holomorphic, Wilsonian term

f
(1)
a , whereas for N = 1 sectors only the non-holomorphic piece ∆n.h.

a is present.

Specifically, the holomorphic gauge kinetic function can now be determined by com-

paring the string theoretical formula (3.1) for the effective gauge coupling with the field

theoretical one (5.1). The first thing to notice are the different cutoff scales appearing in

the two formulas. One needs to convert one into the other using

M2
s

M2
Pl

∝ exp(2φ4) ∝ (S U1 U2 U3)
− 1

2 . (5.6)

Here, φ4 is the four dimensional dilaton and the complex structure moduli in the supergrav-

ity basis can be expressed in terms of φ4 and the complex structure moduli uI = RI,2/RI,1

as

S =
1

2π
e−φ4

1√
u1 u2 u3

, UI =
1

2π
e−φ4

√
uJ uK

uI
, with I 6= J 6= K 6= I . (5.7)

These fields are the real parts of complex scalars of four dimensional chiral multiplets Sc

and U c
I .

As N = 4 super Yang-Mills theory is finite, one expects the sum of the terms in (3.1)

proportional to T (Ga) to cancel. This is because the only chiral multiplets transforming

in the adjoint representation of the gauge group are the open string moduli which (on the

background considered) assemble themselves into three chiral multiplets, thus forming an

N = 4 sector together with the gauge fields. To show that this cancellation does happen,

one notices the following. Firstly, nadjoint = 3, as explained, such that there is no term in

ba proportional to T (Ga). Secondly,

K = − ln(Sc + S
c
) −

3∑

I=1

ln(U c
I + U

c
I) −

3∑

I=1

ln(T c
I + T

c
I) (5.8)

g−2
a,tree = S

3∏

I=1

nI
a −

3∑

I=1

UI nI
am

J
amK

a I 6= J 6= K 6= I, (5.9)
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where TI are the Kähler moduli of the torus and nI
a, mI

a are the wrapping numbers of

the brane. Finally, one needs the matter metric for the open string moduli, which can be

obtained from the T-dual expression in models with D9- and D5-branes [4]. Performing the

T-duality, which essentially amounts to exchanging Kähler and complex structure moduli

and converting gauge flux into non-trivial intersection angles for the D6-branes, one arrives

at (I = 1, . . . , 3):1

KI
ij =

δij

TIUI

∣∣∣∣∣
(nJ

a + iuJ mJ
a)(nK

a + iuK mK
a )

(nI
a + iuI mI

a)

∣∣∣∣∣ I 6= J 6= K 6= I. (5.10)

Let us now turn to the fields in the fundamental representation of the gauge group

Ga, in particular to the fields arising from the intersection with one other stack of branes,

denoted by b. For an N = 1 open string sector the metric for these fields can be written as

Kab
ij = δij S−α

3∏

I=1

U
−(β+ξ θI

ab
)

I T
−(γ+ζ θI

ab
)

I

√
Γ(θ1

ab)Γ(θ2
ab)Γ(1 + θ3

ab)

Γ(1 − θ1
ab)Γ(1 − θ2

ab)Γ(−θ3
ab)

, (5.11)

where α, β, γ, ξ and ζ are undetermined constants. The square-root part of (5.11) was

calculated in [34] (see also [35]), whereas the further dependence on the closed string moduli

was conjectured in [4] (see also [36]). As θ1,2
ab > 0 and θ3

ab < 0, which is assumed in (5.11),

the intersection number Iab is positive, implying that

nf = IabNb. (5.12)

Using Ta(f) = 1
2 and relations (5.2), (5.6), (5.8), (5.11), (5.12) one finds a contribution to

the right hand side of (5.1) proportional to

IabNb

2

(

ln

(
M2

s

µ2

)
+(2γ−1) ln(T1T2T3)+(2β − 1

2 ) ln(U1U2U3)+(2α− 1
2) ln S (5.13)

+ζ

3∑

I=1

θI
ab lnTI +ξ

3∑

I=1

θI
ab lnUI−ln

[
Γ(θ1

ab)Γ(θ2
ab)Γ(1+θ3

ab)

Γ(1−θ1
ab)Γ(1−θ2

ab)Γ(−θ3
ab)

])
.

Using (3.6) one finds that the first and the last term exactly reproduce the contribution

of the last two terms in (3.1). The terms proportional to ζ and ξ will later be shown to

constitute the aforementioned universal gauge coupling correction. The remaining three

terms can neither be attributed to such a correction nor can they be written as the real part

of a holomorphic function. Thus they cannot be the one-loop correction to the gauge kinetic

function and therefore must vanish. This fixes some of the coefficients in the ansatz (5.11):

α = β =
1

4
, γ =

1

2
. (5.14)

The same matching of terms appears between the Möbius diagram plus the annulus with

boundaries on brane a and its orientifold image and the Kähler metrics for fields in the

1An overall factor involving the wrapping numbers was introduced in this expression in order to achieve

full cancellation. This can be done, as the expressions used are derived only up to overall constants [34].
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symmetric and antisymmetric representation. Here, one has to replace θI
ab and IabNb by

θI
aa′ = 2θI

a and Iaa′Na in (5.11) and (3.3). Apart from these replacements, the Kähler

metric for matter in these representations is also given by (5.11) with the constants α, β,

γ given in (5.14).

The corrections to the gauge couplings coming from N = 2 open string sectors were

seen in the previous section to take on quite a different form. They contain a term,

− ln |η(i T c
I )|4 = −4Re [ln η(i T c

I )] , (5.15)

which can be written as the real part of a holomorphic function. This leads one to conclude

that the gauge kinetic function receives one-loop corrections from these sectors. Inserting

the correct prefactor, which from the first term in (3.5) and the corresponding one in (5.1)

can be seen to be proportional to the beta function coefficient, gives

f (1)
a = −Nb |IJ

ab IK
ab |

4π2
ln η(i T c

I ) I 6= J 6= K 6= I, (5.16)

where again I denotes the torus in which the branes lie on top of each other and IJ,K
ab are

the intersection numbers on the other tori.

The term − ln(TI V a
I ) in (3.5) is not the real part of a holomorphic function. Proceeding

as before, one finds that the Kähler metric for the hypermultiplet (or two chiral multiplets)

living at an intersection of branes a and b preserving eight supercharges must be

KI
ij =

|nI
a + iuI mI

a|
(UJ UK T J TK)

1
2

I 6= J 6= K 6= I. (5.17)

Apart from the factor in the numerator, this is in agreement with the form found by direct

calculations [34, 4]. The appearance of the numerator is however plausible as it also appears

in the open string moduli metric and the hypermultiplets under discussion should feel the

I’th torus in the same way.

5.2 Universal threshold corrections

In the following, the aforementioned “universal” gauge coupling corrections will be dis-

cussed. They also appear in the heterotic [13] and type I [37, 38] string and are related to

a redefinition of the dilaton at one-loop [9, 8]. This stems from the fact that the dilaton

really lives in a linear multiplet rather than a chiral one.

Our general ansatz for the Kähler metrics for the chiral matter in an N = 1 sector

contains a factor

3∏

J=1

U
−ξ θJ

ab

J T
−ζ θJ

ab

J , (5.18)

which according to (5.1) appears in the one-loop correction to the gauge coupling constant.

Neither is this term reproduced in the string one-loop calculation of the coupling nor can

it be written as a correction to the holomorphic gauge kinetic function. Therefore, as is

familiar from gauge threshold computations, there remains the possibility that it can be
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absorbed into a one-loop correction to the S and UI chiral superfields. In the following,

we require that such a gauge group factor independent universal correction is possible and

see how this fixes the parameters in (5.18).

The first observation is, that in order to get something gauge group independent, the

factor (5.18) actually must have the following form

3∏

J=1

U
−ξ′ sign(Iab)θ

J
ab

J T
−ζ′ sign(Iab)θ

J
ab

J , (5.19)

with ξ′ and ζ ′ independent of the brane. For the metrics of fields transforming in the

symmetric or antisymmetric representation of the gauge group, one has to replace φab =

φa − φb by φaa′ = 2φa and sign(Iab) by sign(Iaa′ − Ia;O6) or sign(Iaa′ + Ia;O6), respectively.

Then one computes (K ′ denotes the factor (5.18), (5.19) appearing in the full Kähler metric

K):

∑

r

Ta(r) ln det K ′r =
|Iab|Nb

2
ln

[
3∏

J=1

U
−ξ′ sign(Iab) θJ

ab

J T
−ζ′ sign(Iab) θJ

ab

J

]
(5.20)

+
|Iab′ |Nb

2
ln

[
3∏

J=1

U
−ξ′ sign(Iab′ ) θJ

ab′

J T
−ζ′ sign(Iab′ ) θJ

ab′

J

]

+
Na + 2

2

|Iaa′ − Ia;O6|
2

ln

[
3∏

J=1

U
−2ξ′ sign(Iaa′−Ia;O6) θJ

a

J ×

×T
−2ζ′ sign(Iaa′−Ia;O6) θJ

a

J

]

+
Na − 2

2

|Iaa′ + Ia;O6|
2

ln

[
3∏

J=1

U
−2ξ′ sign(Iaa′+Ia;O6) θJ

a

J ×

×T
−2ζ′ sign(Iaa′+Ia;O6) θJ

a

J

]
.

After a few steps, using |Iab| sign(Iab) = Iab and the tadpole cancellation condition, this

can be brought to the simple form

∑

r

Ta(r) ln det K ′r = −n1
an

2
an

3
a

[
∑

b

Nb m1
bm

2
bm

3
b

3∑

I=1

θI
b (ξ′ ln UI + ζ ′ ln TI)

]

−
3∑

J=1

nJ
amK

a mL
a

[
∑

b

Nbm
J
b nK

b nL
b

3∑

I=1

θI
b (ξ′ ln UI + ζ ′ ln TI)

]

J 6= K 6= L 6= J . (5.21)

Therefore, these corrections have precisely the form required for them to be identified with

the one-loop correction between the linear superfields appearing in string theory and the
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chiral superfields used in the supergravity description

SL = S − 1

8π2

∑

b

Nb m1
bm

2
bm

3
b

3∑

I=1

φI
b (ξ′ ln UI + ζ ′ ln TI)

UL
J = UJ +

1

8π2

∑

b

Nb mJ
b nK

b nL
b

3∑

I=1

φI
b (ξ′ ln UI + ζ ′ ln TI)

J 6= K 6= L 6= J. (5.22)

In contrast to eq. (5.9), where the tree-level gauge couplings are determined, the one-loop

gauge couplings at the string scale have to include the redefined fields SL and UL:

g−2
a,string = SL

3∏

I=1

nI
a −

3∑

I=1

UL
I nI

am
J
amK

a . (5.23)

In contrast to all (to us) known cases studied in the literature, for ξ′ 6= 0 the fields

which are corrected, i.e. the moduli S and UI , also appear in the one-loop redefinition. Let

us propose an argument, why such corrections might be expected to be absent: Due to

the anomalous U(1) gauge symmetries, the chiral superfields S and UI participate in the

Green-Schwarz mechanism and therefore transform non-trivially under U(1) gauge trans-

formations. This implies that, in order to be gauge invariant, the one-loop corrections

in (5.22) proportional to lnUI must be extended in the usual way by UI → UI + δa
GSVa.

Computing the resulting FI-terms via the supergravity formula ξa/2g
2
a = ∂K/∂Va|Va=0

gives, besides the tree-level result depending on SL, UL
I , a one-loop contribution propor-

tional to ξ′
∑

b ξ
(0)
b φJ

b /UJ . This has an extra dependence on the complex structure moduli

UI . However, for intersecting D6-branes, we have seen that the Wilsonian (supergravity)

FI-Terms are proportional to the Wilsonian gauge threshold corrections, which depend

only on the Kähler moduli via instanton corrections (for N = 1 sectors they are even van-

ishing in the setup at hand). This seems to suggest that there should better be no U−θI

I

dependence in the matter field Kähler metrics, i.e. ξ′ = 0.

Moreover, in analogy to the heterotic string we expect that for the range −1 ≤ θJ ≤ 1

the exponent of TJ runs over the range [−1, 0]. This condition would fix ζ ′ = ±1/2.

Let us summarise the conclusions we have drawn from requiring holomorphy of the

Wilsonian gauge kinetic function. First, we provided arguments that the Kähler metric for

N = 1 chiral matter fields in intersecting D6-brane models is of the following form

Kab
ij = δij S− 1

4

3∏

J=1

U
− 1

4
J T

−( 1
2
± 1

2
sign(Iab) θJ

ab)
J

√
Γ(θ1

ab)Γ(θ2
ab)Γ(1 + θ3

ab)

Γ(1 − θ1
ab)Γ(1 − θ2

ab)Γ(−θ3
ab)

, (5.24)

where supersymmetry of course requires
∑3

I=1 θI
ab = 0. Second, the holomorphic gauge

kinetic function (on the background considered) only receives corrections from N = 2 open

string sectors and the one-loop correction takes on the following form

f (1)
a = −

∑

b

Nb |IJ
abI

K
ab |

4π2
ln η(i T c

I ) I 6= J 6= K 6= I, (5.25)
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where the sum only runs over branes b which lie on top of brane a in exactly one torus,

denoted by I. Therefore, the results for the gauge threshold corrections and the matter field

Kähler metrics are consistent both with the non-renormalisation theorem from section 2 and

the Kaplunovsky-Louis formula (5.1). Clearly, it would be interesting, along the lines of [34]

to carry out a string amplitude computation to fix the free coefficient in the ansatz (5.11)

and see whether our indirect arguments are correct.

6. Holomorphic E2-instanton amplitudes

Space-time instantons are given also by D-branes, which in this case are Euclidean D2-

branes (so-called E2-branes) wrapping three-cycles Ξ in the Calabi-Yau, so that they are

point-like in four-dimensional Minkowski space. Such instantons can contribute to the

holomorphic superpotential and gauge kinetic functions only if they preserve half of the

N = 1 supersymmetry. This means that the instanton measure must contain a factor

d4x d2θ. Let us first clarify an important aspect of this half-BPS condition. In the second

part of this section we then revisit the computation of contributions of such instantons

to the superpotential and also clarify some issues concerned with the appearing one-loop

determinants. In the third and fourth part, we investigate under which conditions such

string instantons can also contribute to the gauge kinetic functions and FI-terms.

6.1 Half-BPS instantons

As has been explained in [24, 18, 20], just wrapping an E2-instanton around a rigid sLag

three-cycle in the Calabi-Yau gives four bosonic and four fermionic zero modes. The vertex

operators for the latter are

V
(−1/2)
θ (z) = θα e−

ϕ(z)
2 (z)Sα(z) Σh= 3

8
,q= 3

2
(z) (6.1)

and

V
(−1/2)

θ
(z) = θα̇ e−

ϕ(z)
2 Sα̇(z) Σh= 3

8
,q=− 3

2
(z) . (6.2)

Therefore, if the instanton is not invariant under the orientifold projection, one still has

four instead of the desired two fermionic zero modes. Thus, only by placing the E2-brane

in a position invariant under Ωσ does one have a chance to get rid of the two additional

zero modes θ. For so called O(n) instantons one can see that the zero modes xµ, θ are

symmetrised and the mode θ gets anti-symmetrised. For the opposite projection, i.e.

for USp(2n) instantons, the zero modes xµ, θ are anti-symmetrised and the mode θ gets

symmetrised. Therefore, one can only get the simple d4x d2θ instanton measure for a single

O(1) instanton.

6.2 Superpotential contributions

In order to contribute to the superpotential, we also require that there do not arise any

further zero modes from E2-E2 open strings, so that the three-cycle Ξ should be rigid, i.e.

b1(Ξ) = 0. Therefore, considering an E2-instanton in an intersecting brane configuration,
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additional zero modes can only arise from the intersection of the instanton Ξ with D6-

branes Πa. There are Na [Ξ ∩ Πa]
+ chiral fermionic zero modes λa,I and Na [Ξ ∩ Πa]

−

anti-chiral ones, λa,J .2

For its presentation it is useful to introduce the short-hand notation

Φ̂ak,bk
[~xk] = Φak,xk,1

· Φxk,1,xk,2
· Φxk,2,xk,3

· . . . · Φxk,n−1,xk,n
· Φxk,n(k),bk

(6.3)

for the chain-product of open string vertex operators. Here we define Φ̂ak,bk
[~0] = Φak,bk

.

To extract the superpotential, one can probe it by evaluating an appropriate matter

field correlator in the instanton background. The CFT allows one to compute it in physical

normalisation which combines the superpotential part Y with the matter field Kähler

metrics like

〈Φa1,b1 · . . . · ΦaM ,bM
〉E2−inst =

e
K

2 YΦa1,b1
,...,ΦaM,bM√

Ka1,b1 · . . . · KaM ,bM

. (6.4)

In [14] a general expression for the single E2-instanton contribution to the charged

matter superpotential was proposed involving the evaluation of the following zero mode

integral over disc and one-loop open string CFT amplitudes

〈Φa1,b1 · . . . · ΦaM ,bM
〉E2 =

V3

gs

∫
d4x d2θ

∑

conf.

∏
a

(∏[Ξ∩Πa]+

i=1 dλi
a

) (∏[Ξ∩Πa]−

i=1 dλ
i
a

)

exp(−SE2) · exp
(
Z ′

0(E2)
)
·

·〈Φ̂a1,b1 [~x1]〉λa1 ,λb1
· . . . · 〈Φ̂aL,bL

[~xL]〉λaL
,λbL

. (6.5)

For simplicity, we do not consider the case that matter fields are also assigned to string

loop diagrams. The one-loop contributions are annulus diagrams for open strings with

one boundary on the E2-instanton and the other boundary on the various D6-branes and

Möbius diagrams with boundary on the E2-instanton

〈1〉1-loop = Z ′
0(E2) =

∑
b Z ′A(E2a,D6b) + Z ′M (E2a,O6) . (6.6)

Here Z ′ means that we only sum over the massive open string states in the loop amplitude,

as the zero modes are taken care of explicitly. It was shown that these instantonic open

string loop diagrams are identical to the one-loop threshold corrections TA(D6a,D6b).

Diagrammatically we have the intriguing relation shown in figure 1 and in figure 2, which

holds for the even spin structures.3 The annulus threshold corrections can be computed,

leading to

ZA(E2a,D6b) =

∫ ∞

0

dt

t

∑

α,β 6=( 1
2
, 1
2
)

(−1)2(α+β)
ϑ′′[α

β
](it)

η3(it)
ACY

ab [α
β
](it) (6.7)

2Here we introduced the physical intersection number between two branes Πa ∩Πb, which is the sum of

positive [Πa ∩ Πb]
+ and negative [Πa ∩ Πb]

− intersections.
3The contribution of the CP-odd R− sector is expected to yield corrections to the θ-angle.
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Fa

Fax

x

D6aaE2 =D6b D6b

Figure 1: Relation between instantonic one-loop amplitudes and corresponding gauge threshold

corrections

Fa

Fax

x

D6aaE2 =

O6O6

Figure 2: Relation between instantonic Möbius amplitude and corresponding gauge threshold

corrections

and the Möbius strip amplitude for the instanton, which as we explained must be invariant

under the orientifold projection, yields

ZM(E2a,O6) = ±
∫ ∞

0

dt

t

∑

α,β 6=( 1
2
, 1
2
)

(−1)2(α+β)
ϑ′′[α

β
]
(
it + 1

2

)

η3
(
it + 1

2

) ACY
aa [α

β
]
(
it + 1

2

)
. (6.8)

The overall plus sign is for O(1) instantons, reflecting the fact that only for these the

xµ and θα zero modes survive the orientifold projection. Note that up to the argument,

the Möbius thresholds are ZA(E2a,D6a). Therefore, for rigid branes the massless sector

reflects the number of four bosonic and two fermionic zero modes. In section 6.3 we will

discuss the number of zero modes if b1(Ξ) > 0. All these stringy threshold corrections are

known to be non-holomorphic. Therefore, it is not immediately obvious in which sense the

expression (6.5) is meant and how one can extract the holomorphic superpotential part Y

from it.

The CFT disc amplitudes in (6.5) are also not holomorphic but combine non-

holomorphic Kähler potential contributions and holomorphic superpotential contributions

in the usual way [39 – 42]:

〈Φ̂a,b[~x]〉λa,λb
=

e
K

2 YλaΦa,x1Φx1,x2 ...ΦxN ,b λb√
Kλa,a Ka,x1 . . . Kxn,b Kb,λb

(6.9)

=
e

K

2 Y
λa

bΦa,b[x]λb√
Kλa,a K̂a,b[x]Kb,λb

. (6.10)

Due to the Kaplunovsky-Louis formula (5.1), the stringy one-loop amplitudes are known

to include the holomorphic Wilsonian part and contributions from wave-function normali-
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sation. Applied to the instanton one-loop amplitudes appearing in Z0(E2a), we write

Z0(E2a) = −8π2 ℜ(f (1)
a ) − ba

2
ln

(
M2

p

µ2

)
− ca

2
Ktree (6.11)

− ln

(
V3

gs

)

tree

+
∑

b

|IabNb|
2

ln
[
det Kab

]

tree
,

where for the brane and instanton configuration in question the coefficients are

ba =
∑

b

|IabNb|
2

− 3, ca =
∑

b

|IabNb|
2

− 1. (6.12)

The constant contributions arise from the Möbius amplitude. Inserting (6.9) and (6.11)

in (6.5), one realises that the Kähler metrics involving an instanton zero mode and a matter

field precisely cancel out, so that only the matter metrics survive, as required by the general

form (6.4). Moreover, the term exp(K/2) comes out just right due to the rule that each disc

contains precisely two instanton zero modes. The holomorphic piece in (6.4) can therefore

be expressed entirely in terms of other holomorphic quantities like holomorphic Yukawa

couplings, the holomorphic instanton action and the one-loop holomorphic Wilsonian gauge

kinetic function on the E2-brane:

YΦa1,b1
,...,ΦaM ,bM

=
∑

conf.

signconf exp(−SE2)tree exp
(
−f (1)

a

)
(6.13)

·Yλa1
bΦa1,b1

[~x1]λb1
· . . . · Yλa1

bΦaL,bL
[~xL]λbL

.

This explicitly shows that knowing the tree-level Kähler potentials, computing the matter

field correlator in the instanton background up to one-loop level in gs is sufficient to deduce

the Wilsonian holomorphic instanton generated superpotential. Higher order corrections

in gs only come from loop corrections to the Kähler potentials.

6.3 Instanton corrections to the gauge kinetic functions

So far we have discussed space-time instanton corrections to the superpotential. These

involved one-loop determinants, which are given by annulus vacuum diagrams with at

least one E2 boundary. These are related to one-loop gauge threshold corrections to the

gauge theory on a D6-brane wrapping the same cycle as the E2 instanton.

Now we can ask what other corrections these space-time instantons can induce. By

applying S- and T-dualities to the story of world-sheet instanton corrections in the heterotic

string, we expect that there can also be E2-instanton corrections to the holomorphic gauge

kinetic functions. In the heterotic case, similar to the topological Type II string, such

corrections arise from string world-sheets of Euler characteristic zero, i.e. here from world-

sheets with two boundaries. Therefore, we expect such corrections to appear for E2-

instantons admitting one complex open string modulus, i.e. those wrapping a three-cycle

with Betti number b1(Ξ) = 1.

Let us start by discussing the instanton zero mode structure for such a cycle. First let

us provide the form of the vertex operators. The bosonic fields in the (−1) ghost picture
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are

V (−1)
y (z) = y e−ϕ(z) Σh= 1

2
,q=±1(z) (6.14)

which, before the orientifold projection, are accompanied by the two pairs of fermionic zero

modes

V (−1/2)
µ (z) = µα e−

ϕ(z)
2 Sα(z) Σh= 3

8
,q=− 1

2
(z) (6.15)

and

V
(−1/2)
µ (z) = µα̇ e−

ϕ(z)
2 Sα̇(z) Σh= 3

8
,q=+ 1

2
(z) . (6.16)

Now one has to distinguish two cases depending on how the anti-holomorphic involution σ

acts on the open string modulus Y

σ : y → ±y. (6.17)

In the case that y is invariant under σ, called first kind in the following, the orientifold

projection acts in the same way as for the 4D fields Xµ, i.e. the two bosonic zero modes

y and the two fermionic zero modes µ survive. In the other case, dubbed second kind,

the bosonic zero mode is projected out and only the fermionic modulino zero mode µ

survives.4 Therefore, in the absence of any additional zero modes, for instance from E2-D6

intersections, the zero mode measure in any instanton amplitude assumes the following

form
∫

d4x d2θ d2y d2µ e−SE2 . . . , for σ : y → y (6.18)

and
∫

d4x d2θ d2µ e−SE2 . . . , for σ : y → −y. (6.19)

As an example consider the set-up in figure 3 with σ : yi → −yi. Here the deformations

∆x1,2 are of the first kind and ∆y3 is of the second kind.

Now, it is clear that an instanton with precisely one set of fermionic zero modes of the

second kind and no additional zero modes can generate a correction to the SU(Na) gauge

kinetic function. The instanton amplitude takes on the following form

〈Fa(p1)Fa(p2)〉E2 =

∫
d4x d2θ d2µ exp(−SE2) exp

(
Z ′

0(E2)
)

AF 2
a
(E2,D6a)

where AF 2
a
(E2,D6a) is the annulus diagram in figure 4, which absorbs all the appearing

fermionic zero modes and where the gauge boson vertex operators in the (0)-ghost picture

4By duality, this distinction is related to the two kinds of deformations of genus g curves studied in [43].

The first kind are the curves moving in families, i.e. transversal deformation of the curve. The second kind

is related to the deformations coming with the genus g of the curve.
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3
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Figure 3: Deformations of an instanton which is invariant under the orientifold projection

E2D6a

θ(1/2)

θ(1/2)

µ(−1/2)

µaF

aF

x

x x

x

x

x

(0)

(0) (−1/2)

Figure 4: Annulus diagram for E2-instanton correction to fa. The upper indices give the ghost

number of the vertex operators.

have the usual form

V
(0)
A (z) = ǫµ (∂µX(z) + i(p · ψ)ψµ(z)) eip·X(z). (6.20)

Analogous to world-sheet instantons, these diagrams can be generalised to multi tr(W 2)h

couplings. Just from the zero mode counting one immediately sees that they can be gener-

ated by E2-instantons with h sets of complex deformation zero modes of the second kind

and no other additional zero modes. Then, besides the annulus diagram in figure 4, there

are h−1 similar diagrams. On the D6a brane one inserts two gauginos in the (+1/2) ghost

picture and on the E2 boundary two µ modulinos in the (−1/2) ghost picture. Clearly, once

the internal N = 2 superconformal field theory is known, as for toroidal orbifolds or Gepner

models, these annulus diagrams can be computed explicitly. They involve up to four-point

functions of vertex operators on an annulus world-sheet with the two boundaries on the

E2 and the D6a brane. Very similar to the N = 2 open string sectors for loop-corrections

to fa, one expects these instanton diagrams to also contain a sum over world-sheet instan-

tons. Therefore, the generic E2-instanton contribution to the holomorphic gauge kinetic

functions has the moduli dependence fnp
(
e−Uc

I , e−T c
i

)
.

6.4 Instanton corrections to the FI-terms

Having shown that E2-instanton corrections to the gauge couplings are possible, it is natural

to investigate whether such instantons also contribute to the FI-terms for the U(1) gauge
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µ
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(−1/2)
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x

x

x

x

x

x

x

aD
θ

θ µ

µ
(0)

Figure 5: Annulus diagram for E2-instanton correction to ξa. The upper indices give the ghost

number of the vertex operators.

symmetries on the D6-branes. As we have seen in section 4, at the one-loop level the

contributions to the gauge couplings and to the FI-terms have the same functional form.

Assume now that, as in the last section, in the background with intersecting D6-branes

we can find an E2-instanton with only two θ fermionic zero modes and two additional

fermionic zero modes related to a deformation of the E2. If now similar to the D6-branes

we could break supersymmetry on the E2-branes by a slight deformation of the complex

structure, then we would expect four θ-like, four µ-like and two y-like zero modes. As

shown in figure 5, these could generate an FI-term on the D6-branes. However, since

the E2-brane must be invariant, i.e. an O(1) instanton, under the orientifold projection,

a complex structure deformation does not necessarily break supersymmetry on the E2-

instanton. In this case, the analogous situation to the one-loop D6-brane generation of the

FI-term cannot happen.

However, there is another mechanism to generate an FI-term on the E2-instanton,

namely by turning on the
∫
Ξ C3 modulus through the three-cycle the E2-instanton is wrap-

ping. This also appears in the (generalised) calibration condition [44, 45] for supersymme-

try on the E2-brane. Therefore, it is possible that the one-loop diagram in figure 5 indeed

generates an FI-term on the D6a brane once the C3 flux through the E2 is non-zero.

Here we will leave a further study of the concrete instanton amplitudes for g−2
a and ξa

and their relation for future work and conclude that just from fermionic zero mode counting,

we have evidence that E2-instanton corrections to both the gauge kinetic functions and the

FI-terms are likely to appear.

7. Conclusions

In this paper we have investigated a number of aspects related to loop and D-brane instan-

ton corrections to intersecting D6-brane models in Type IIA orientifolds. In particular, we

have revisited the computation of one-loop corrections to the FI-terms.

Using results for the gauge threshold corrections in intersecting D6-brane models on a

toroidal orientifold, we explicitly computed the Wilsonian holomorphic gauge coupling in

this setup. On the way, exploiting holomorphy and the Shifman-Vainshtein, respectively

Kaplunovsky-Louis formula, it was possible to constrain the form of the matter field Kähler

metrics. In the second part, we discussed E2-brane instanton corrections to the superpo-

tential, the gauge kinetic function and the FI-terms. For the first, we showed in which

– 20 –



J
H
E
P
0
8
(
2
0
0
7
)
0
4
4

sense one can extract the form of the holomorphic superpotential from a superconformal

field theory correlation function of matter fields in the E2-instanton background.

Moreover, we showed that E2-instantons wrapping a three-cycle which has precisely

one complex deformation and no matter zero modes, can in principle contribute to the

gauge kinetic function for a gauge theory on a stack of D6-branes. By turning on the

R-R three-form modulus, also instanton corrections to the FI-terms become possible. A

more detailed investigation of the appearing annulus diagrams is necessary to eventually

establish the appearance of these instanton corrections, but our first steps indicate that

such corrections are indeed present in N = 1 D-brane vacua.
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